Viscosity B Coefficients for Polymethylenebis(trimethylammonium) Dibromides in Aqueous Solutions

Kunio TAMAKI* and Akifumi Fujiwara

Department of Chemistry, Yokohama City University, Kanazawa-ku, Yokohama 236

(Received May 16, 1985)

Synopsis. The viscosity *B* coefficients of the Jones-Dole equation for N,N'-polymethylenebis(trimethylammonium) dibromides $[(CH_3)_3N(CH_2)_nN(CH_3)_3]Br_2$ (n=3-8, 10, and 12) and for comparison for alkyltrimethylammonium bromides $C_nH_{2n+1}N(CH_3)_3Br$ (n=2-6) in aqueous solutions at 25 and 35° have been determined, and the effect of structural changes in the solvent water upon the dissolution of both series of electrolytes is discussed.

In a previous paper,¹⁾ the balance of ionic hydration and hydrophobic hydration in aqueous solutions of N,N'-polymethylenebis(trimethylammonium) dibromides ([(CH₃)₃N(CH₂)_nN(CH₃)₃]Br₂, which will be abbreviated as, MeC_nMe) were discussed on the basis of the changes in the heat capacity upon dissolution in water. In this paper, an experimental study of the viscosity B coefficients for a series of MeC_nMe and, for comparison, for a series of alkyltrimethylammonium bromides (C_nH_{2n+1}N(CH₃)₃Br, which will be abbreviated as C_nMe) in aqueous solutions will be reported.

Experimental

MeC_nMe except for MeC₇Me and C_nMe were the same samples as those described in a previous paper.¹⁾ MeC₇Me was prepared by the reaction of 1,7-dibromoheptane with an excess of trimethylamine in ethanol, and was purified several times by recrytallization from ethanol. Water was triply distilled.

The viscosities were measured at 25 and 35 °C with an automatic viscometer of the Shibayama Scientific Co., Ltd. The densities were measured using a vibrating-tube densimeter, twin-type SS-D-200 of the Shibayama Scientific Co., Ltd. The detailed procedure was described in a previous paper.²⁰ The electrical conductivities were measured with a Yokogawa audio-frequency bridge using a frequency of 1000 Hz.

Results and Discussion

The Viscosity B Coefficients of Electrolytes. The viscosity of an aqueous solution of an electrolyte, η , can be represented by the Jones-Dole equation:

$$\eta = \eta_0 (1 + Ac^{1/2} + Bc) \tag{1}$$

where η_0 is the viscosity of water, c is the molar concentration, A is a constant related to the ion-ion interaction, and B is the viscosity B coefficient. The constant A was interpreted theoretically by Falkenhagen and Vernon, 3 and can be calculated using the data of the limiting equivalent conductivities of the salt, cation, and anion. Equation 1 may be converted to,

$$\eta/\eta_0 - 1 - Ac^{1/2} = Bc \tag{2}$$

When the left-hand side of Eq. 1, using the calculated

values of A, is plotted against c, the viscosity B coefficient is obtained as the slope of a linear line. Figures 1 and 2 show the results of plotting Eq. 2 for MeC_nMe and C_nMe respectively. The values of A and B for both series of compounds are summarized in Table 1. The B values for C₂Me, C₄Me, and C₆Me are in reasonable agreement with the values reported by Tanaka $et\ al.^4$ The B values for both series of compounds increase approximately linearly with the number of carbon atoms in the polymethylene or alkyl group, n.

The temperature dependence of the *B* values is a factor of the solute-solvent interaction; the *B* values increase with the temperature for a solvent-structure-breaking salt, and decrease with temperature for a solvent-structure-making solute.⁵⁾ For the MeC_nMe series, it may be seen in Table 1 that the *B* values for MeC₃Me and MeC₄Me increase as the temperature is

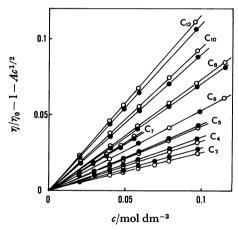


Fig. 1. Plots of $\eta/\eta_0 - 1 - Ac^{1/2}$ against c for MeC_nMe. \bigcirc , 25 °C; \bigcirc , 35 °C.

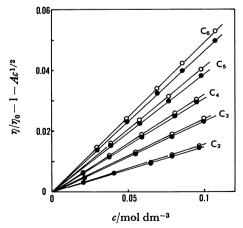


Fig. 2. Plots of $\eta/\eta_0 - 1 - Ac^{1/2}$ against c for C_n Me. \bigcirc , 25 °C; \bigoplus , 35 °C.

TABLE 1. THE VALUES OF A, B, AND B_{ion}

n	$\frac{A}{\mathrm{dm}^{3/2}\mathrm{mol}^{-1/2}}$		$\frac{B}{\mathrm{dm^3mol^{-1}}}$		$\frac{B_{\rm ion}}{\rm dm^3mol^{-1}}$	
T/c	°C 25	35	25	35	25	35
		[(CH ₃);	$N(CH_2)_n$	N(CH ₃) ₃]B ₁	r ₂	
3	0.0143	0.0147	0.260	0.284	0.340	0.336
4	0.0146	0.0151	0.330	0.353	0.410	0.405
5	0.0150	0.0154	0.426	0.440	0.506	0.492
6	0.0154	0.0159	0.536	0.537	0.616	0.589
7	0.0158	0.0163	0.643	0.635	0.723	0.687
8	0.0162	0.0167	0.733	0.708	0.813	0.760
10	0.0167	0.0172	0.945	0.909	1.024	0.961
12	0.0170	0.0176	1.165	1.115	1.245	1.167
		C_n	$H_{2n+1}N(C$	H ₃) ₃ Br		
1			$0.076^{a)}$	0.087^{a}	0.116	0.113
2	0.0065	0.0067	0.151	0.148	0.191	0.174
			$0.16^{b)}$			
3	0.0068	0.0070	0.239	0.229	0.279	0.255
4	0.0071	0.0073	0.326	0.310	0.366	0.336
			0.31ы			
5	0.0073	0.0075	0.414	0.388	0.454	0.414
6	0.0075	0.0077	0.494	0.461	0.534	0.487
			$0.45^{b)}$			

a) Ref. 6; b) Ref. 4.

raised from 25 to 35 °C, and these salts may therefore be considered to behave as structure-breaking salts in the water phase. The *B* values of MeC₆Me are insensitive to the temperature. With MeC₇Me and higher homologs, the *B* values decrease with an increase in the temperature, therefore these salts exhibit a water-structure-making-effect. It was noted in previous work¹⁾ on the change of heat capacity upon dissolution that MeC₆Me exhibited a slight tendency to behave as a structure-making solute. The classification of the behavior of a salt in water is somewhat dependent on the experimental method adopted.

With the C_n Me series, viscometric studies of tetramethylammonium bromide $(CH_3)_4NBr$, abbreviated as C_1 Me in this paper, have been reported by several investigators, and the results by Out and Los® are included in Table 1. The B values for C_1 Me increase with the temperature; this salt may be considered to act as a structure-breaking salt. The B values of C_2 Me are insensitive to the temperature, and it seems to be a borderline salt. The B values for C_3 Me and the higher homologs decrease with the temperature, and they are to be classified as hydrophobic structure-makers.

Figure 3 shows the changes in the viscosity B coefficients which occur as the temperature is raised from 25 to 35 °C, ΔB , as a function of n for MeC_nMe and C_nMe. If we take one-half the values of ΔB for

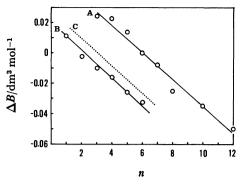


Fig. 3. Plots of ΔB against n. A, MeC_nMe; B, C_nMe; C, $-(CH_2)_nN(CH_3)_3Br$.

MeC_nMe, the values of ΔB for a series of $-(CH_2)_nN-(CH_3)_3Br$ can be estimated. The ΔB vs. n relation thus obtained is plotted as a dotted line in Fig. 3. It is found that, for the same number of n, the values of ΔB for $-(CH_2)_nN(CH_3)_3Br$ are higher than those of ΔB for C_nMe . This fact indicates that the hydrophobic character of the polymethylene chain in MeC_nMe is considerably diminished as compared with that of the alkyl chain in C_nMe with the same number of n.

The Viscosity B Coefficients of Ions. values of electrolytes are determined by adding the individual contributions of the ions. Out and Los6) reported the ionic B values of the Br- ion as a function of temperature according to the convention of Gurney⁷⁾ that the ionic B values for K+ and Clions are equal. The ionic B values of Br-ion6) are -0.040 and -0.026 dm³ mol⁻¹ at 25 and 35 °C, respectively. The *B* values of organic ions obtained are included in Table 1. With the MeC_nMe²⁺ series, the ionic B values of MeC₃Me²⁺ and MeC₄Me²⁺ ions vary little with temperature. The ionic B values of MeC₅Me²⁺ and the higher homologous ions decrease with the temperature, so they are classified as structure-making ions. With the C_nMe series, the ionic B values of C₁Me⁺ are practically constant between 25 and 35 °C. The B values of C₂Me+ and the higher homologous ions decrease with the temperature, so they are classified as structuremaking ions.

References

- 1) K. Tamaki and R. Furuya, Bull. Chem. Soc. Jpn., 57, 3325 (1984).
- 2) K. Tamaki, Y. Ohara, M. Inabe, T. Mori, and F. Numata, *Bull. Chem. Soc. Jpn.*, **56**, 1930 (1983).
- 3) H. Falkenhagen and E. L. Vernon, *Z. Physik.*, **33**, 140 (1932).
- 4) M. Tanaka, S. Kaneshina, W. Nishimoto, and H. Takabatake, *Bull. Chem. Soc. Jpn.*, **46**, 364 (1973).
- 5) R. L. Kay, T. Vituccio, C. Zawoyski, and D. F. Evans, *J. Phys. Chem.*, **70**, 2336 (1966).
- 6) D. J. P. Out and J. M. Los, J. Solution Chem., **9**, 19 (1980).
- 7) R. W. Gurney, "Ionic Processes in Solution," McGraw-Hill, New York (1953) p. 159.